Abstract
Abstract The conventional slider-connecting rod–crank mechanism is widely applied in mechanical systems. The use of hydrodynamic bearings in the mechanism joints is of particular interest in reducing friction, mainly in special conditions of lubrication such as the connecting rod–slider joint. This bearing belongs to a class of bearings with alternating rotational motion. This paper proposes a mathematical model for this particular problem, considering the dynamics of the slider-connecting rod–crank system interacting with the lubrication phenomenon in bearings with alternating motion. Two models were used to analyze the dynamics of the system. The first model (by Eksergian Equation of Motion) represents the system when the connecting rod end is in contact with the bearing surface, assuming, in this condition, the same behavior as that of rigid bearings (without clearance). The second model (by Lagrange Method) represents the system when the connecting rod end is in the hydrodynamic lubrication mode in the slider bore clearance. In this condition, the slider moves in relation to the connecting rod, presenting a problem of multi-degrees-of-freedom. The mathematic model of hydrodynamic lubrication was introduced to obtain more realistic results of the system's dynamic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.