Abstract

In this work a vectorized and parallel version of the Finite-Difference Time-Domain method (FDTD) is applied to Volume Holographic Gratings (VHG) and Thin-Film Filters (TFF). In particular, in this work gratings with a grating period vector forming an arbitrary angle with the perpendicular to the plane of incidence are analyzed. Angular and wavelength selectivity are obtained by means of the normalized diffraction efficiency. These parameters are positively compared with experimental values and also with analytical closed expressions, thus validating our method. Furthermore, analysis of the performance of the parallel method is shown obtaining a severe improvement with respect to the classical version of the FDTD method. This improvement of the algorithm provides a feasible and accurate scheme for simulating a wide range of optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call