Abstract

Organochlorine pesticides (OCPs) were typical persistent organic pollutants that posed great hazards and high risks in soil. In this study, a peanut shell biochar-loaded nano zero-valent iron (BC/nZVI) material was prepared in combination with soil indigenous microorganisms to enhance the degradation of α-hexachlorocyclohexane(α-HCH) and γ-hexachlorocyclohexane(γ-HCH) in water and soil. The effects of BC/nZVI on indigenous microorganisms in soil were investigated based on the changes in redox potential and dehydrogenase activity in the soil. The results showed as follows: (1) The specific surface area of peanut shell biochar loaded with nano-zero-valent iron was large, and the nano-zero-valent iron particles were evenly distributed on the peanut shell biochar; (2) peanut shell BC/nZVI had a good degradation effect on α-HCH and γ-HCH in water, with degradation rates of 64.18% for α-HCH and 91.87% for γ-HCH in 24 h; (3) peanut shell BC/nZVI also had a good degradation effect on α-HCH and γ-HCH in soil, and the degradation rates of α-HCH and γ-HCH in the 1% BC/nZVI reached 55.2% and 85.4%, second only to 1% zero-valent iron. The degradation rate was the fastest from 0 to 7 days, while the soil oxidation-reduction potential (ORP) increased sharply. (4) The addition of BC/nZVI to the soil resulted in a significant increase in dehydrogenase activity, which further promoted the degradation of HCHs; the amount of HCHs degradation was significantly negatively correlated with dehydrogenase activity. This study provides a remediation strategy for HCH-contaminated sites, reducing the human health risk of HCHs in the soil while helping to improve the soil and increase the activity of soil microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.