Abstract
In this paper we consider a fluid–solid interaction problem posed in the plane. We employ a mixed variational formulation in the obstacle, in which the Cauchy stress tensor and the rotation are the only unknowns. This new mixed formulation is coupled, through suitable transmission conditions on the wet interface, with a Helmholtz equation satisfied by the pressure of the fluid in the unbounded domain. We use a traditional primal variational formulation in this part of the domain and incorporate the far field information through boundary integral equations. We approximate the resulting weak formulation by a Galerkin scheme based on PEERS in the solid and on a FEM-BEM approach in the fluid part. We show that our scheme is uniquely solvable and convergent, and then provide optimal error estimates. Finally, we illustrate our analysis with some computational experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.