Abstract

The mechanical and physicochemical properties of diesel engine exhaust particles before and after diesel oxidation catalyst (DOC) treatment are analyzed. It is considered important to explore the interrelationships between these attributes in order to understand their relevance. Understanding of these properties provides insights into the deposition characteristics of particles within the system and the evolution of the particles after the DOC treatment, which may help the selection of appropriate aftertreatment strategies. In this paper, particle samples were collected before and after the DOC to explore the variations in the mechanical and physicochemical properties of the particles under different operating conditions. Atomic force microscopy, thermogravimetric analysis, transmission electron microscopy, and Raman spectroscopy were employed to investigate the attraction force, adhesion force, adhesion energy, oxidative reactivity, primary particle size, nanostructure, and graphitization degree of the particles. The results indicated that under post-injection conditions, the attraction force, adhesion force, and adhesion energy of the particles increased significantly. However, when the particles passed through the DOC, these properties decreased to varying degrees. By analyzing the combination of physicochemical properties, it was determined that the attraction force of the particles was primarily influenced by the primary particle size and the particle's graphite structure. The adhesion force was found to be closely related to the content of soluble organic matter. Additionally, the soluble organic matter affected the degree of particle agglomeration by altering the adhesion energy of the particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.