Abstract

Coherent flow structures in turbulent boundary layers have been an active field of research for many decades, as they might be the key to reveal the mechanics of turbulence production and transport in turbulent shear flows. Renard and Deck (2016) proposed a theoretical decomposition for the mean skin-friction coefficient based on the mean kinetic energy budget in the streamwise direction. This decomposition, referred to as the Renard-Deck (RD) decomposition, decomposes the mean skin friction generation into three physical mechanisms in an absolute reference frame, namely, direct viscous dissipation, turbulent kinetic energy production, and spatial growth. In this study, the large scale motions (LSMs) are extracted using a proper orthogonal decomposition (POD) of the velocity field based on high-spatial-resolution two-dimensional – two-component particle image velocimetry (HSR 2C-2D PIV) of a zero-pressure-gradient turbulent boundary layer (ZPG-TBL), and their effect on the skin friction via RD decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.