Abstract

The conformation and stability of Escherichia coli derived recombinant human interleukin 4 (rhuIL-4) have been examined by circular dichroism (CD). Protein unfolding was detected by ellipticity changes at 222 nm with increasing concentrations of guanidine hydrochloride (GdnHCl). The unfolding midpoint ([GdnHCl]1/2) was 3.7 M, the free energy of unfolding, (delta GDH2O), was 5.9 kcal/mol and the dependence of delta GD on the GdnHCl concentration (m) was 1.6 (kcal/mol)/M. This unfolding was demonstrated to be reversible upon removal of the GdnHCl by dialysis. Analysis of the far-UV CD spectrum indicated the presence of a high percentage of alpha-helical structure (ca. 73%). A small change in ellipticity was noted over the pH range 1.9-9.6, suggesting that the protein undergoes a minor conformational change with an apparent pKa of 4.17. Virtually complete biological activity, measured in vitro in a T-cell proliferation assay, was recovered following exposure to extreme values of pH (i.e., pH 3 and 10). An analysis of the near-UV CD spectrum indicated that the single tryptophan residue at position 91 was unconstrained and most likely exposed to the solvent. Titration with 4,4'-dithiodipyridine and 2-nitrothiosulfobenzoate established that the six cysteine residues in rhuIL-4 were involved in intramolecular disulfide linkages. These data support that rhuIL-4 has a highly stable three-dimensional structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.