Abstract

Given the increasing global demand for rare metals, there is a need for the development of fundamental predictive models to improve extraction processes. Comminution models commonly predict particle size reduction based on the compressive breakage behaviour; however, few of them include mineral concentration or mineral liberation at a coarse scale. This paper focuses on developing a model to predict the mineral concentration of rare metals as a function of the particle size distribution after a cycle of the compression crushing process. In this study, compressive breakage and geochemical analysis experiments were conducted on four different rare metal ores of tantalum and tungsten. The work is divided into two stages: the methodology of modelling particle size and modelling concentration by selecting a bimodal Weibull distribution for calibration. A novel model for simulating the concentration of rare metals as a function of the compression ratio is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call