Abstract

Visual sense has an important role in shaping human understanding of the natural world. Nevertheless, it is not clear how the complexity of visual stimuli influences the complexity of information processing in the brain. In this study, we hypothesized that changes in the fractal pattern of electroencephalogram (EEG) signals directly follow the changes in the fractal dimension of animations. Therefore, 12 types of 2D fractal animations were presented to a group of healthy students (15 males, [Formula: see text] years old, 3 left-handed) while their brain signals were recorded using a 32-channel amplifier. Regression analysis between the fractal dimension of EEG signals and the fractal dimension of animations indicated that the complexity of fractal animations is directly sensed by changes in the fractal dimension of EEG signals at the centro-parietal and parietal regions. It may indicate that when the complexity of visual stimuli increases, the mechanism of information processing in the brain also enhances its complexity to better attend to and comprehend the stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.