Abstract

AbstractThe complex thermal behavior of poly(l‐lactic acid) films crystallized from the melt, either isothermally or nonisothermally, was studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and small angle X‐ray scattering. The variation of the thermal behavior with crystallization temperature, time, and cooling rate was documented and analyzed. After nonisothermal crystallization at low cooling rates that develop high crystallinity, an obvious double melting peak appears at modest heating rates (e.g., 10 °C/min). At higher heating rates, these samples exhibit only single melting. However, an unusual form of double melting occurs under the majority of the conditions studied under either isothermal or nonisothermal conditions. In this case, double melting is marked by the appearance of a recrystallization exotherm just prior to the final melting that obscures the observation of the melting of the crystals formed during the initial crystallization process. The occurrence of double melting in melt‐crystallized samples was concluded to be the result of a melt‐recrystallization process occurring during the subsequent DSC heating scan; it is a function of crystalline perfection, not the initial crystallinity, nor whether or not the crystallization reached completion at the crystallization temperature. Many other very interesting observations are also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3378–3391, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call