Abstract
The creep strengthening mechanisms in (age‐hardenable) aluminum alloys are analyzed on the basis of a new microstructural study of powder samples, an analysis of a comprehensive revision of creep data from the literature, and a new modeling approach. A strategy based on the strength difference (SD) method to separate the contributions of solid solution atoms and precipitates to creep strengthening is proposed. The new methodology considers the combination of the two contributions avoiding the need of a threshold stress term in the creep equation. The contribution of both precipitates and solid solution is taken into account by means of the analysis of the lattice parameter variation with aging time. For this study, powders of two commercial AA2xxx alloys have been analyzed using diffraction methods. The experimental results are modeled using Lubarda's approach combined with the SD method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.