Abstract
The hazardous sludge disposal process in the form of landfills requires the determination inter alia of the flammable and explosion properties of dried sewage sludge dust, which has the ability to ignite and spontaneously combust when stored in silos. At a constant furnace surface temperature, the minimum ignition temperature of the sludge dust layer with a layer thickness of 5 mm is 270 °C, and for a layer thickness of 12.5 mm it is 250 °C. Two selected fire extinguishing powders for Class A, B, C and D fires were used in the study to determine the possibility of reducing the susceptibility of dried wastewater to ignition from heated surface, self-ignition and explosion parameters. The most effective extinguishing powder was ABC Favorit, which increased the value of the minimum ignition temperature of the layer (5 mm thick) to 360 °C and the spontaneous ignition temperature of the sludge with this powder increased by 22 °C at 169.6 cm3 in comparison to the sludge without extinguishing powder, respectively. The lowest self-ignition temperature of 136 °C was recorded for the largest tested volume (169.6 cm3) for dried sewage dust without any fire extinguishing powders. The biggest values of pmax and (dp/dt)max dried sewage dust were recorded 4.8 bar and 113 bar/s respectively. By analysing the obtained test results, it can be assumed that dried sewage dust is a combustible material with properties similar to biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.