Abstract

The existence of serotonin (5-HT)-containing neurons in the spinal cord of the chick embryo was examined by anti-5-HT immunocytochemistry. The first immunoreactive cells were observed in embryos at 7 days of incubation (E7) and were initially located within the floor plate of the early spinal cord. By E9, immunostained cells occurred throughout the length of the spinal cord and were frequently encountered in most transverse sections of the cord. When examined at later embryonic ages of E12, 17 and at hatching (E21 or 22), the 5-HT cells became progressively more difficult to find with the advancing age of the embryos. To determine if this population of spinal cord 5-HT neurons actually diminished during development, a detailed quantitative analysis was undertaken to estimate the number of 5-HT cells in the cord of chick embryos at different ages. The results of this investigation demonstrated that the size of the 5-HT neuronal population rose rapidly from E7 and plateaued (at approximately 3500 neurons) between E9 and E12. As anticipated, the number of 5-HT cells at E17 decreased at all cord levels. Surprisingly, however, the number of spinal cord 5-HT neurons at hatching increased (depending on the cord level) either back to, or above, the counts estimated for the earlier ages of E9 and E12. Therefore, cells expressing the 5-HT phenotype in the spinal cord of the chick embryo persist throughout the period of embryonic development, rather than appear transiently. Furthermore, the fluctuations in 5-HT cell numbers during chick embryogenesis may indicate some regulation in the expression of the 5-HT phenotype in this population of spinal cord neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call