Abstract

The bonding structures of tetrahedrane, phosphatetrahedrane, diphosphatetrahedrane and triphosphatetrahedrane are studied by employing an intrinsic quasi-atomic orbital analysis. Ethane, cyclopropane and tetrahedral P4 are employed as reference systems. The orbital analysis is paired with the computation of strain energies via isodesmic reactions. The results show that the increase in geometric strain upon transition from ethane to cyclopropane to tetrahedrane weakens the CC bonds, despite leading to shorter C-C interatomic distances. With the increase in strain, the orbitals centered on C and involved in the bonding of the cage structure are observed to have elevated p-character, and the orbital structure of C deviates from sp3 hybridization. The systematic substitution of CH groups by P atoms in the cage structure of tetrahedrane leads to stronger CC bonds, larger angles in the cage structures of the resulting phosphatetrahedranes, lower p-character in the orbitals involved in the bonding of the cages, and lower strain energies. It is found that P is more amenable to strained molecular arrangements than is C, and that the propensity of a given atom to hybridize s and p functions, or the lack thereof, has implications in the stability of molecules with strained geometries. The combination of the calculations presented here with the existing literature provides insight into the apparent propensity of tetrahedrane and P4 to 'break' their tetrahedral structures. Trends in the bonding interactions, such as bond strengths, s- and p-orbital characters and charge transfer are identified and related to the strain energy observed in each of the analyzed systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.