Abstract
Computed tomography combined with mechanical tests offers completely new insight into the behavior of concrete samples under stress. Particularly the development of new fiber reinforcement materials for concrete elements requires appropriate material models and thus for investigating the interior of the concrete structure. In 3D image data obtained by computed tomography, local structural changes within the sample due to mechanical loading can be observed without further altering the sample. We applied this state-of-the-art approach to a concrete core with an embedded glass fiber reinforced polymer rebar under increasing forces applied to pull out the rebar. In this paper, authors describe a novel in-situ setup for non-destructively 3D imaging during the pull-out test. Conducting the pull-out test leads to the formation of local pore volume changes along the rebar. These pore volume changes are not only visualized but quantified analytically based on the images. Interpreting these volume changes, we derive a novel method for calculating strain and normal stresses in the rebar. Our new method captures the detailed distribution of the bond stresses between rebar and concrete and consequently describes the bond behavior more accurate. It turns out that the observed bond behavior cannot be explained completely by commonly assumed material laws. This emphasizes the need for further, more extensive research combining 3D imaging, mechanical testing, and quantitative image analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.