Abstract

This study examined the biological activity and genome of Bacillus cereus CDHWZ7 isolated from the root of Lycium ruthenicum in the Dachaidan saline area, Haixi Prefecture, Qinghai Province, China. The results revealed that B. cereus CDHWZ7 exhibited strong inhibition activity against the pathogenic fungi Fusarium graminearum, F. acuminatum, and F. oxysporum. CDHWZ7 also demonstrated cellulose-degrading activity, nitrogen-fixing activity, and the ability to secrete indole-3-acetic acid (IAA) at 55.00 mg∙L−1. The strain CDHWZ7 can grow at a salt concentration of 3–11%, a pH range of 5–11, and a temperature of 4 °C–18 °C, and shows good salt tolerance, acid and alkaline tolerance, and low-temperature fitness. The genome of strain CDHWZ7 was sequenced using Illumina HiSeq + PacBio, revealing a circular structure of 5,648,783 bp in length, containing two intact plasmids with an average GC content of 35.2%, and a total number of 5672 encoded genes. It contained 106 tRNA genes, 42 rRNA genes, and 134 sRNA genes. A total of 137 genes were annotated as carbohydrases, with a total base length of 3,968,396,297 bp. The numbers of coding sequences assigned to the Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of Proteins, and Gene Ontology Databases were 4038, 4133, and 2160, respectively. Further analysis of the genome identified genes encoding chitinase activity, cellulases, secondary metabolites, phytohormone production, volatile compounds, nitrogen and phosphate metabolism, and resistance responses to biotic stresses (glycine betaine transporter protein, catalase, superoxide dismutase, low-affinity potassium transporter protein, cold-shock protein, heat-shock protein), as well as genes related to proliferation, stress response, and resistance to pathogenic fungi. Therefore, this study determined that strain CDHWZ7 has several excellent biological traits, such as antagonism to pathogenic fungi, nitrogen-fixation ability, cellulose-degradation ability, and IAA-production ability. The genome sequence of strain CDHWZ7 and several biodefense functional genes were also analyzed, revealing the potential use of strain CDHWZ7 in the development of biological agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call