Abstract

In multiple engineering fields such as rock drilling or building constructions or extreme events like earthquakes or impacts, the dynamic properties of rock play an important role. A way to model these events and define measures to minimize the damage derived from these events is created by means of numerical analysis. Hence, the knowledge of the dynamic material behavior is essential for studying the effects of such a loading scenario. Solid geological materials, from the family of the sedimentary rocks, have been analyzed under quasi-static loads. However, there is a lack of knowledge when high strain rate loadings are involved. Within this context, the paper focuses on the experimental characterization of two sedimentary rocks, sandstone and limestone, under impact loading using the Hopkinson-Bar spallation and compression tests. The analysis encompasses the determination of the tensile and compressive properties as well as the comparison between the quasi-static and dynamic behavior (dynamic increase factors). The paper fills the gap of information existing about dynamic behavior of sedimentary rocks under strain rates between 100 and 5.2 × 102 s−1. Furthermore, the fragmentation under different strain rates is investigated and conclusions with respect to energy absorption capacity are drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.