Abstract

Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode (DEA) can obtain high hydrogen utilization by a comparatively simple system. Nevertheless, the accumulation of the nitrogen and the water in the anode channels can lead to a local fuel starvation, which degrades the performance and durability of PEMFCs. In this paper, the behaviors of PEMFCs with a DEA are explored experimentally by detecting the current distribution and the local potentials. The results indicate that the current distribution is uneven during the DEA operation. The local current firstly decreases at the region near the anode outlet, and then extends to the inlet region along the channels with time. The complete fuel starvation near the anode outlet leads to a high local potential and carbon corrosion on the cathode side. The SEM images of the cathode electrode reveal that the significant thickness reduction and the collapse of the electrode's porous structure happen in the cathode catalyst layer, leading to the irreversible decline of the performance. The comparison of the experiments with different oxidants and fuels reveals that the nitrogen crossover from cathode to anode is the dominant factor on the performance decline under the DEA operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call