Abstract

Many exoskeletons today are primarily tested in controlled, steady-state laboratory conditions that are unrealistic representations of their real-world usage in which walking conditions (e.g., speed, slope, and stride length) change constantly. One potential solution is to detect these changing walking conditions online using Bayesian state estimation to deliver assistance that continuously adapts to the wearer's gait. This paper investigates such an approach in silico, aiming to understand 1) which of the various Bayesian filter assumptions best match the problem, and 2) which gait parameters can be feasibly estimated with different combinations of sensors available to different exoskeleton configurations (pelvis, thigh, shank, and/or foot). Our results suggest that the assumptions of the Extended Kalman Filter are well suited to accurately estimate phase, stride frequency, stride length, and ramp inclination with a wide variety of sparse sensor configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.