Abstract
The level of protection offered by a given ballistic material is typically evaluated in terms of a set of projectiles and their associated velocity at which a certain percentage of the projectiles are expected to perforate. (i.e. FSP 17gr : V<sub>50</sub> = 500m/s, 9mm FMJ; V<sub>0</sub>=500m/s). These metrics give little information about the physical phenomena by which energy is dispersed, spread or absorbed in a specific target material. Aside from post-test inspection of the impacted material, additional information on the target response is traditionally obtained during a test from the use of high speed imaging, whether it is from a single camera aimed at the impact surface or the backface, or from a set of camera allowing full 3-D reconstruction of a deformed surface. Again, this kind of data may be difficult to interpret if the interest is in the way energy is managed in the target in real time. Recent technological progress in scientific grade high-speed infrared (IR) camera demonstrated that these phenomena can straightforwardly be measured using IR thermal imaging. This paper presents promising results obtained from Telops FAST-IR 1500 infrared camera on an aramid-based ballistic composite during an impact from a small caliber fragment simulating projectile (FSP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.