Abstract

Silicon carbide (SiC) and pyrolytic carbon (PyC) coatings in tristructural isotropic (TRISO) coated fuel particles were characterised by a combination of 2-modulator generalised ellipsometry microscopy (2-MGEM), Raman spectroscopy and transmission electron microscopy. We compared the values of anisotropy obtained from 2-MGEM and Raman spectroscopy to investigate the effect of sampling area and microstructure. No linear correlation in anisotropy was found between these two techniques despite both sampling areas of 2–5μm. The largest deviations were observed for highly anisotropic samples with optical anisotropy factors (OPTAFs) above 1.1. For medium and low anisotropy samples (OPTAF<1.1) the relationship is close to linear. The limited use of only the average value of diattenuation does not give an accurate representation of the characteristics of the coatings as significant areas can exist with considerably higher diattenuations that could increase the probability of failure under neutron irradiation. We also observe a change in the diattenuation of SiC due to the presence of stacking faults as confirmed by Raman spectroscopy. Raman spectroscopy was also used to perform semiquantitative analysis of the Si and carbon excess in SiC in four TRISO particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.