Abstract

The results of the analysis of the accuracy of measuring the flux density of all hydrogen isotopes from the first wall of the main vacuum chamber to the ITER tokamak plasma using the high-resolution spectroscopy of Balmer alpha lines of hydrogen isotopes (H-alpha diagnostics) are presented. Under the conditions of the expected high background radiation generated by the divertor stray light and the absence of the possibility of using the optical dumps in ITER, a differential measurement scheme is necessary, which uses the spatial variation of the coefficient of the light reflection from the natural landscape of the first wall. The measurement accuracy analysis is carried out with the help of the method of synthetic diagnostics, which uses the results of the predictive numerical modeling of different modes of hydrogen recycling for simulation of the expected diagnostic signals and determination of the desired parameters by solving an inverse problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.