Abstract
The monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 phosphates are materials for positive electrodes in Li-ion batteries. They also have interesting structures to test and improve the understanding of Li NMR signals in paramagnetic compounds. The position of such signals is governed by the transfer of electron spin density from the transition metal ion to the Li nucleus. These mechanisms are based on delocalization and polarization effects which induce positive and negative Fermi contact shifts, respectively. We have characterized Li3Fe2(PO4)3 by Li NMR. To understand the signals observed, we have analyzed the electron spin density transfer mechanisms (i) by considering the different Li environments, (ii) by using DFT calculations. We compare our analysis to the one very recently reported by Davis et al. These analyses have been extended to Li3V2(PO4)3 studied by NMR by Cahill et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.