Abstract

The cubic-quintic Ginzburg-Landau equation (CQGLE) governs the dynamics of solitons in lasers and many optical systems. Using data obtained from the simulations of the CQGLE, we performed a singular value decomposition (SVD) to create a low dimensional model that qualitatively predicts the stability of the solitons as a function of the energy gain constant. It was found both in the full simulations and in the low dimensional model that the soliton becomes unstable when the gain exceeds a certain threshold value. Both the low dimensional model and the full simulation demonstrated the same qualitative behavior when the soliton loses stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call