Abstract

The 2001 Etna eruption was characterized by a complex temporal evolution with the opening of seven eruptive fissures, each feeding different lava flows. This work describes a method adopted to obtain the three‐dimensional geometry of the whole lava flow field and for the reconstruction, based on topographic data, of the temporal evolution of the largest lava flow emitted from a vent located at 2100 m a.s.l. Preeruption and posteruption Digital Elevation Models (DEM) were extracted from vector contour maps. Comparison of the two DEMs and analysis of posteruption orthophotos allowed us to estimate flow area, thickness, and bulk volume. Additionally, the two‐dimensional temporal evolution of the 2100 flow was precisely reconstructed by means of maps compiled during the eruption. These data, together with estimates of flow thickness, allowed us to evaluate emitted lava volumes and in turn the average volumetric flow rates The analysis performed in this paper provided, a total lava bulk volume of 40.1 × 106 m3 for the whole lava flow field, most of which emitted from the 2100 vent (21.4 × 106 m3). The derived effusion rate trend shows an initial period of waxing flow followed by a longer period of waning flow. This is in agreement not only with the few available effusion rate measurements performed during the eruption, but also with the theoretical model of Wadge (1981) for the temporal variation in discharge during the tapping of a pressurized source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.