Abstract

Allan variance has been widely utilized for evaluating the stability of the time series generated by atomic clocks and lasers, in time regimes ranging from short to extremely long. This multiscale examination capability of the Allan variance may also be beneficial in evaluating the chaotic oscillating dynamics of semiconductor lasers- not just for conventional phase stability analysis. In the present study, we demonstrated Allan variance analysis of the complex time series generated by a semiconductor laser with delayed feedback, including low-frequency fluctuations (LFFs), which exhibit both fast and slow dynamics. While the detection of LFFs is difficult with the conventional power spectrum analysis method in the low-frequency regime, the Allan variance approach clearly captured the appearance of multiple time-scale dynamics, such as LFFs. This study demonstrates that Allan variance can help in understanding and characterizing diverse laser dynamics, including LFFs, spanning a wide range of timescales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.