Abstract

In this paper, the temperature-dependent extended X-ray absorption fine structure (EXAFS) of distorted crystalline cadmium has been analyzed using an efficient calculation-model. The analysis procedure is based on evaluating the influence of temperature on the phase shift and amplitude reduction of EXAFS oscillation that is expressed in terms of the EXAFS Debye-Waller factor. The anharmonic EXAFS cumulants are calculated by expanding the anharmonic correlated Debye model based on the anharmonic effective potential that depends on the structural characteristics of distorted crystalline cadmium. The numerical results satisfy well with those obtained using the experimental data and other models at various temperatures. The obtained results indicate that this theoretical model is useful for calculating and analyzing the experimental EXAFS data of distorted crystalline metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.