Abstract

The temperature field plays an important role in the fusion welding process, it determines the microstructure and properties of the welded joint. It is very difficult and expensive to determine the temperature in the welded joint experimentally, so this study proposes a solution to determine the temperature field as well as the phase transformation during welding by numerical simulation using SYSWELD software. Through the analysis of the welding temperature field, we can evaluate the ability of the fusion/penetration of joint, the size of the heat-affected zone as well as some welding defects that may be encountered to determine the feasible heat-input range for a specific welding joint. The analysis of welding temperature-time curves will assess the ability to form the hard microstructures such as martensite or bainite that cause brittleness leading to a decrease in the working ability of the welded joint, on that basis, the suitable welding parameter can be found. The research results show that for a butt-welded joint made of A516 grade 70 structural carbon steel with 16 mm thickness, 4 welding runs will have to be welded with the corresponding feasible heat-input ranges respectively of 2252 J/mm ≤ q1 ≤ 2402 J/mm, 2828 J/mm < q2 < 3328 J/mm, 2458 J/mm < q3 < 2518 J/mm and 2878 J/mm < q4 < 3628 J/mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call