Abstract

We study the performance of a class of time-offset estimation algorithms for synchronization of master-slave nodes based on asynchronous transfer of timing cells when GPS is not used. We implement a synchronization control mechanism based on cell acknowledgment time-out (TO) with wait or no wait options. We analyze the mechanism reliability and performance parameters over symmetric links using an exponential cell delay variation model. We show that the maximum-likelihood offset estimator does not exist for the exponential likelihood function. We analytically provide RMS error result comparisons for five ad hoc offset estimation algorithms: the median round delay, the minimum round delay, the minimum link delay (MnLD), the median phase, and the average phase. We show that the MnLD algorithm achieves the best accuracy over symmetric links without having to impose a strict TO control, which substantially speeds up the algorithm. We also discuss an open-loop estimation updating mechanism based on standard clock models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.