Abstract

Background and ObjectiveLow shear stress (LSS) has been demonstrated to be involved in function of vascular endothelial cells. Here we tested the hypothesis that activation of Syk played an important in LSS-induced atherosclerosis via PECAM-1 signaling pathway. MethodsIn vitro, primary human umbilical vein endothelial cells (HUVECs) were stimulated with parallel plate flow chamber system for 12h under normal shear stress (NSS, 15dyne/cm2), LSS (5dyne/cm2) and high shear stress (HSS, 25dyne/cm2), respectively, followed by inflammatory response analysis. In vivo, animal models of rat fed atherogenic diet were treated with LSS stimulation by constricting abdominal aorta with a blunted needle (0.6mm in diameter). The spatial distribution of WSS of blood vessels was generated by WSS quantitative analysis software through color Doppler flow imaging with a high-frequency small animal ultrasound system. Small molecule R406, a well-demonstrated Syk inhibitor, was applied to animals as well as HUVEC cells. ResultsIn vivo, comparison with the control group was performed, the mean value of WSS distribution of blood vessels was lower in LSS model rat. LSS promoted expression of phosphorylated PECAM-1 (p-PECAM-1) and Syk in LSS model rats. Compared with control group, endothelial cells of the abdominal aorta become less elongated and more polygonal in LSS group, and had a slender shape in LSS with R406 group. In vitro, LSS increased the expression of p-PECAM-1, Syk and NF-κB in HUVECs. Inhibition of Syk attenuated LSS-induced inflammatory response. ConclusionsActivation of Syk resulted in LSS-induced inflammatory response via PECAM-1 signaling pathway both in vitro and in vivo. Syk might be involved in morphological changes of ECs under the influence of LSS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.