Abstract

Aim:To analyze surface roughness and three-dimensional (3D) scanning topography parameters of zirconia implants before and after photofunctionalization by atomic force microscopy (AFM).Materials and Methods:Ten commercially available zirconia implants five each in the study and control group were taken. The study group was subjected to ultraviolet (UV) radiation for 48 h using the shorter wavelength of 254 nm. After washing all the implants with 70% alcohol and drying, 3D surface topography and roughness parameters were analyzed using CSC 17 probe AFM at three different magnifications 25 μm, 50 μm, and 80 μm, respectively.Results:The surface topography and calculated mean amplitude, spatial, and hybrid parameters of the study group were higher than the control group (P < 0.05) in all three magnifications. Up to scale depth and peak value for the study and control group were (−0.4–0.4: −2-1) (−0.75 to 0.6:−1–1.3) (−0.75-−0.5: −1.5-1.3) for the study and control group at 25, 50, and 80 μm magnification, respectively. This indicates that photofunctionalization increased surface roughness of Zirconia implants to desirable extent.Conclusion:There is a definite difference in the quantitative topographic characteristics with zirconia implants being microroughned after photofunctionalization (UV treatment).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call