Abstract

We have investigated the supermode properties, namely, mode effective refractive index (RI) (neff), effective area (Aeff), and chromatic dispersion (CD), in three-core homogeneous strongly coupled multicore fibers (SC-MCFs) for different core RI profiles (step index and RI dip) and in different possible core arrangements (triangular and linear). Further, the impacts of fiber parameters, namely, core radius (a), relative RI difference between core and cladding (Δ), and core pitch (Λ), on the differential group delay (DGD) between different supermodes have also been analyzed for all the considered configurations of SC-MCFs. The analysis presented has been done numerically using the FemSIM simulation platform. It has been observed that core arrangement has significant impact on the levels of neff, Aeff, CD, and DGD, and it also affects the degeneracy of the supermodes in a three-core homogeneous SC-MCF. Further, there exist certain core pitches in which the Aeff values of fundamental supermodes in different core layouts are equal. Furthermore, there exists a certain relative RI difference between the core and cladding (Δ) values in which DGD values in all the considered SC-MCF configurations are equal. On the other hand, over a range of Δ values, DGD in a linear layout is flattened compared to a triangular layout. Incorporating the RI dip structure in the cores of SC-MCFs affects the CD levels significantly. Therefore, by careful control of the fiber parameters and core arrangement, large mode effective area and low and flattened dispersion SC-MCF can be designed that may be suitable in dense wavelength division multiplexing application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.