Abstract

Sulfate-reducing prokaryotes (SRP) and sulfur-oxidizing prokaryotes (SOP) play vital roles in the sulfur cycle. The SRP community was used to represent a microbial community with high richness and diversity. The 454 pyrosequencing, Illumina high-throughput sequencing, and traditional clone library methods that target the dissimilatory sulfite reductase β subunit gene (dsrB), which encodes a key enzyme in the sulfate reduction pathway, were used to compare the differences in SRP community characteristics. Comparative analyses suggested that Illumina high-throughput sequencing was a more appropriate method for SRP (high richness and diversity) community studies. The SOP soxB gene (~750 bp) was used as a representative of the long-sequence segment. The 454 pyrosequencing and Illumina high-throughput sequencing methods were used to compare the differences in SOP community characteristics. The results revealed that 454 pyrosequencing did not reflect its advantage of a longer read length; whereas, the Illumina high-throughput sequencing with more numerous and shorter sequence reads was more suitable when the soxB gene was used to investigate the community composition and diversity of SOP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.