Abstract

AbstractAn antifuse structure was analyzed using scanning electron microscope imaging and focused ion beam image slicing to generate a form of three-dimensional microscopy. This method reveals nanometer scale features that could not be easily imaged using a single focused ion beam cross-section. A novel end-point detection technique has been developed to control the thickness of the slice to about 2 nm. Voxel imaging and interpretive three-dimensional reconstruction was used to resolve volumes as small as 2 cubic nm3. It was determined that the fusing region for an antifuse is a complex mixture of material phases with an elliptical volume approximately 75 nm in diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.