Abstract

The UGT1 complex codes for a subfamily of homologous "1A7-like" UDP-glucuronosyltransferases (UGTs), including UGT1A7 and UGT1A8. Little information is available regarding either the substrate specificities or regulation of the UGT1A7-like forms from rats. We compared the activities and tissue expression of UGT1A7 and UGT1A8, which exhibit 77% identity in their amino terminal sequence. UGT1A7 shows broad specificity, catalyzing the glucuronidation of 31 of 40 randomly selected substrates (100 muM) at rates >0.1 nmol/mg/min. UGT1A7 substrates included both planar and nonplanar compounds, mono- and polycyclic aromatics, and compounds with bulky side chain ring substitutions. UGT1A8 exhibited a narrower substrate specificity that completely overlapped with UGT1A7. UGT1A8 was most active toward the 1-OH, 4-OH, 5-OH, 6-OH, 7-OH, 10-OH, 11-OH, and 12-OH derivatives of benzo[a]pyrene. Other effective UGT1A8 substrates (>0.1 nmol/mg/min) included 9-OH-benzo[a]pyrene, 1-naphthol, 4-methylumbelliferone, 7-hydroxycoumarin, chrysin, quercetin, 4-nitrophenol, and estriol. In general, substrates preferred by UGT1A8 were polyaromatic planar structures with nonbulky substituents and a superimposable 1-naphtho ring structure. Studies of the tissue expression of the UGT1A7 and 1A8 mRNAs using RNase protection analysis suggested that each is expressed in liver and kidney of control rats. A major difference is the higher expression of UGT1A7 mRNA in intestine. These studies suggest complementary functions of the UGT1A7 and UGT1A8 forms in xenobiotic metabolism. Further studies are necessary to determine whether their relative contributions change as a function of development, hormonal status, or exposure to inducing agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.