Abstract

Copper (Cu) nanoparticles were prepared by chemical reduction method. The synthesized Cu nanoparticles were characterized with different techniques such as powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) spectrum, Transmission electron microscopy (TEM), UV-Visible spectrum and the dielectric properties of the prepared nanoparticles. The X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of Cu nanoparticles. The morphology and the size of the Cu nanoparticles were characterized using Scanning Electron Microscopy and Transmission Electron Microscopy (SEM and TEM). The elemental composition of Cu nanoparticles was analyzed by Energy Dispersive X-ray (EDX) spectrum. The particle size of the Cu nanoparticles was also analyzed, using the Dynamic Light Scattering (DLS) experiment. The optical properties were studied using the UV-Visible spectrum in the wavelength range of 550 - 900 nm. The dielectric properties of Cu nanoparticles were studied at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call