Abstract

Although the molecular origins of sickle cell disease (SCD) have been extensively studied, the effects of SCD on the vasculature-which can influence blood clotting mechanisms, pain crises, and strokes-are not well understood. Improving this understanding can yield insight into the mechanisms and wide-ranging effects of this devastating disease. We aim to demonstrate the ability of a label-free 3D quantitative phase imaging technology, called quantitative oblique back-illumination microscopy (qOBM), to provide insight into the effects of SCD on brain vasculature. Using qOBM, we quantitatively analyze the vasculature of freshly excised, but otherwise unaltered, whole mouse brains. We use Townes sickle transgenic mice, which closely recapitulate the pathophysiology of human SCD, and sickle cell trait mice as controls. Two developmental time points are studied: 6-week-old mice and 20-week-old mice. Quantitative structural and biophysical parameters of the vessels (including the refractive index (RI), which is linearly proportional to dry mass) are extracted from the high-resolution images and analyzed. qOBM reveals structural differences in the brain blood vessel thickness (thinner for SCD in particular brain regions) and the RI of the vessel wall (higher and containing a larger variation throughout the brain for SCD). These changes were only significant in 20-week-old mice. Further, vessel breakages are observed in SCD mice at both time points. The vessel wall RI distribution near these breaks, up to away from the breaking point, shows an erratic behavior characterized by wide RI variations. Vessel diameter, tortuosity, texture within the vessel, and structural fractal patterns are found to not be statistically different. As with vessel breaks, we also observe blood vessel blockages only in mice brains with SCD. qOBM provides insight into the biophysical and structural composition of brain blood vessels in mice with SCD. Data suggest that the RI may be an indirect indicator of vessel rigidity, vessel strength, and/or tensions, which change with SCD. Future ex vivo and in vivo studies with qOBM could improve our understanding of SCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.