Abstract

We describe a source-model technique for the analysis of the strictly bound modes propagating in photonic crystal fibers that have a finite photonic bandgap crystal cladding and are surrounded by an air jacket. In this model the field is simulated by a superposition of fields of fictitious electric and magnetic current filaments, suitably placed near the media interfaces of the fiber. A simple point-matching procedure is subsequently used to enforce the continuity conditions across the interfaces, leading to a homogeneous matrix equation. Nontrivial solutions to this equation yield the mode field patterns and propagation constants. As an example, we analyze a hollow-core photonic crystal fiber. Symmetry characteristics of the modes are discussed and exploited to reduce the computational burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.