Abstract

The equal channel angular drawing (ECAD) process is an innovative method to obtain materials with high plastic strain in a continuous way. This deformation is higher than the deformation achieved by a conventional wire drawing process, for the same reduction of the cross section, so if an adequate thermal treatment is employed later, it could be possible to obtain an initial material with high value that could be useful in conventional manufacturing processes. This process consists in drawing a material through a die where two circular channels intersect at an angle between 90º and 135º. In this work a study using finite element of the plastic strain and the stresses that appear for one aluminium alloy AA-1370 has been carried out. Two ECAD passes have been made, where for the second pass the billet has been rotated 180º along the longitudinal axis. Finally, a calibrated pass has been carried out in order to obtain the billet with homogeneous dimensions in all the cross section. All the simulations have been calculated at room temperature and by using good conditions of lubrication. In order to perform the FEM simulations, a three dimensional geometry has been used. To analyze by FEM the second ECAD pass and the calibration pass, the deformations and stresses achieved in the previous passes have been taken into consideration. This has been done with the aim of achieving higher accuracy. Moreover, a comparative analysis with experimental results has been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.