Abstract

The aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country. The methods employed for the trend detection and quantification were the Mann–Kendall (MK) test, the modified MK (MMK) test, and the Sen’s slope (SS) estimator. Statistically significant trends (at a 95% level of confidence) were detected in more than 30% of the 105 evaluated datasets. The results from the MK test indicate the presence of statistically significant downward trends in the upstream stations and upward trends in the downstream stations, with the latter presenting steep positive slopes. The findings of this study are valuable assets for water resources management and sustainable planning in the Meta River Basin.

Highlights

  • The availability of water resources for agriculture, industry, and cities is fundamental to the welfare and sustainable development of modern human societies

  • The results indicate that, at a 5% level of significance and for both MK and modified MK (MMK) tests, four stations present a significant trend for this feature: Puente Lleras, Humapo, Aguaverde, and Aceitico

  • Results from the trend analysis for the minimum annual streamflow provided in Table 4 indicate that five of the stations present a significant trend at a 95% confidence level for this feature: Cabuyaro, Humapo, Puerto Texas, Santa María, and Aguaverde

Read more

Summary

Introduction

The availability of water resources for agriculture, industry, and cities is fundamental to the welfare and sustainable development of modern human societies. Among these resources, rivers provide multiple benefits to humans, such as hydropower, waterways, recreation, and fishery. Detecting variability and trends in river streamflow time-series are vital for the appropriate management and planning of these water resources, as it diminishes the risks and detrimental effects associated with wrongfully assuming stationarity in hydrologic design. Some of these possible effects include: underestimating design flow rates for hydraulic structures, assigning water rights beyond

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.