Abstract
Commercially pure aluminum sheets, AA 1050, are processed by accumulative roll bonding (ARB) up to eight cycles to achieve ultrafine-grained (UFG) aluminum as primary material for mechanical testing. Optical microscopy and electron backscattering diffraction analysis are used for microstructural analysis of the processed sheets. Strain rate sensitivity (m-value) of the specimens is measured over a wide range of strain rates by stress relaxation test under plane strain compression. It is shown that the flow stress activation volume is reduced by decrease of the grain size. This reduction which follows a linear relation for UFG specimens, is thought to enhance the required effective (or thermal) component of flow stress. This results in increase of the m-value with the number of ARB cycles. Strain rate sensitivity is also obtained as a monotonic function of strain rate. The results show that this parameter increases monotonically by decrease of the strain rate, in particular for specimens processed by more ARB cycles. This increase is mainly linked to enhanced grain boundary sliding as a competing mechanism of deformation acting besides the common dislocation glide at low strain rate deformation of UFGed aluminum. Recovery of the internal (athermal) component of flow stress during the relaxation of these specimens seems also to cause further increase of the m-value by decrease of the strain rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.