Abstract

Newly developed assumed stress finite elements, based on a mixed variational principle which includes unsymmetric stress, rotation (drilling degrees of freedom), pressure, and displacement as variables, are presented. The elements are capable of handling geometrically nonlinear as well as materially nonlinear two dimensional problems, with and without volume constraints. As an application of the elements, strain localization problems are investigated in incompressible materials which have strain softening elastic constitutive relations. It is found that the arclength method, in conjunction with the Newton Raphson procedure, plays a crucial role in dealing with problems of this kind to pass through the limit load and bifurcation points in the solution paths. The numerical examples demonstrate that the present numerical procedures capture the formation of shear bands successfully and the results are in good agreement with analytical solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.