Abstract
In this paper we discuss statistical properties and convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random sample from the original (true) distribution is generated and consequently the SDDP algorithm is applied to the constructed Sample Average Approximation (SAA) problem. Then we proceed to analysis of the SDDP solutions of the SAA problem and their relations to solutions of the “true” problem. Finally we discuss an extension of the SDDP method to a risk averse formulation of multistage stochastic programs. We argue that the computational complexity of the corresponding SDDP algorithm is almost the same as in the risk neutral case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.