Abstract

The deviation in the carbonization rate in the coke oven chamber has been investigated with the use of test coke ovens and a 2-dimensional mathematical model.In the measurement using a 250 kg test coke oven, in the case of using a wet coal charge, there were several points of delay in the carbonization rate at random times, but in the case of a dry coal charge, there were no points of delay and the carbonization progressed uniformly. It was confirmed that the deviation in the carbonization rate was affected by the moisture content of the charged coal.In order to evaluate flow pattern and heat transfer caused by the steam and the decomposition gas during carbonization, a 2-dimensional gas flow mathematical model was developed. This model consists of mass, energy involving terms of convection and momentum balance equations in both the gas and solid phases. It was confirmed that temperature change, changes in gas pressure and steam flow pattern in a test coke oven with the heating wall at the upper portion were estimated by this model. In the model calculation, the coke fissures and a local distribution of the bulk density affected the steam flow and caused a deviation in the carbonization rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call