Abstract

Abstract The problem of projection of a flyer plate with a traveling distributed load and subsequent collision of it to a base plate, as applied to explosive welding, is addressed in this paper. A semi-infinite solid-perfectly plastic beam is employed to model the flyer plate subject to two transverse pressure profiles, traveling at constant speed on its top and bottom surfaces, which represent the explosion and collision loads, respectively. A steady state deformation process is considered and the analysis is developed for the pure bending and combined shear and bending deformation conditions. It follows from analysis that two plastic bending hinges form ahead and at the rear end of each pressure profile and travel at constant velocity. Furthermore, when the width of the pressure is small, the shearing deformation region is generated within the loaded area. The state of the deformation in the collision stage in contrast to the propulsion stage is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call