Abstract

Static noise margins (SNMs) and power-gating efficiency were computationally analyzed for our proposed nonvolatile SRAM (NV-SRAM) cell based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque MTJs (STT-MTJs). The NV-SRAM cell has the same SNMs as an optimized 6T-SRAM cell. SNMs for other recently-proposed NV-SRAM cells using STT-MTJs were also evaluated, and we showed that their SNMs were deteriorated owing to the effect of the constituent STT-MTJs. Break-even time (BET) and power efficiency were analyzed for the NV-SRAM cell using PS-MOSFETs. The BET can be successfully minimized by controlling the bias of the cell. The average power dissipation can be effectively reduced by power-gating (PG) executions, and the further reduction is made possible by introducing a sleep mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.