Abstract
Volume, osmolality, and concentrations for Na, Cl, and raffinose have been measured as a function of time in standing droplets within rat intermediate and late proximal tubules. Standing droplet reabsorption proceeds without the development of a measurable osmotic difference across the epithelium. After 140 s of tubular exposure, droplet-to-plasma concentration differences are observed for raffinose, Na, and Cl with the observed Na concentration difference, usually referred to as limiting gradient, being approximately 9 mM. It is possible that a smaller or even no limiting difference would be attained with longer exposure times. Previous values measured for the limiting Na concentration in the rat proximal tubule were determined before the attainment of constant concentrations. Assuming that the Na concentration we measured is the limiting value, we estimate that active NaCl transport accounts for a very small fraction, less than 6%, of the volume reabsorption; using an alternative approach of fitting a theoretical model to our experimental data, active NaCl transport is again estimated to account for only 6% of the total reabsorbate. The previous interpretation that a limiting Na concentration gradient constitutes the most direct evidence for active Na transport may be in error; the gradient we measure can be modeled without incorporating active NaCl transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.