Abstract

In this paper, we investigate three important properties (stability, local convergence, and transformation invariance) of a variant of particle swarm optimization (PSO) called standard PSO 2011 (SPSO2011). Through some experiments, we identify boundaries of coefficients for this algorithm that ensure particles converge to their equilibrium. Our experiments show that these convergence boundaries for this algorithm are: 1) dependent on the number of dimensions of the problem; 2) different from that of some other PSO variants; and 3) not affected by the stagnation assumption. We also determine boundaries for coefficients associated with different behaviors, e.g., nonoscillatory and zigzagging, of particles before convergence through analysis of particle positions in the frequency domain. In addition, we investigate the local convergence property of this algorithm and we prove that it is not locally convergent. We provide a sufficient condition and related proofs for local convergence for a formulation that represents updating rules of a large class of PSO variants. We modify the SPSO2011 in such a way that it satisfies that sufficient condition; hence, the modified algorithm is locally convergent. Also, we prove that the original standard PSO algorithm is not sensitive to rotation, scaling, and translation of the search space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.