Abstract

A delay differential mathematical model that described HIV infection of CD4 + T-cells is analyzed. The stability of the non-negative equilibria and the existence of Hopf bifurcation are investigated. A stability switch in the system due to variation of delay parameter has been observed, so is the phenomena of Hopf bifurcation and stable limit cycle. The estimation of the length of delay to preserve stability has been calculated. Using the normal form theory and center manifold argument, the explicit formulaes which determine the stability, the direction and the periodic of bifurcating period solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.