Abstract
AbstractWe study the stability properties of, and the phase error present in, a finite element scheme for Maxwell's equations coupled with a Debye or Lorentz polarization model. In one dimension we consider a second order formulation for the electric field with an ordinary differential equation for the electric polarization added as an auxiliary constraint. The finite element method uses linear finite elements in space for the electric field as well as the electric polarization, and a theta scheme for the time discretization. Numerical experiments suggest the method is unconditionally stable for both Debye and Lorentz models. We compare the stability and phase error properties of the method presented here with those of finite difference methods that have been analyzed in the literature. We also conduct numerical simulations that verify the stability and dispersion properties of the scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.